返回第六十五章 拉普拉斯矩阵与人工智能(2 / 2)头顶三本书首页

关灯 护眼     字体:

上一页 目录 下一章

“刘天路说他从来没有夜不归宿过,他是正人君子。”周明率先说道。

“咦~~~,刘天路,你还要意思说,经常星期五星期六晚上看不到你人,你还说你没有夜不归宿过?”赵乐天看了看刘天路,不屑地说道。

宿舍里的人都知道刘天路夜不归宿是干嘛去了,而刘天路见自己被周明反反将一军,也是恼羞成怒,和周明纠缠起来。

“好了好了,还要上课呢。人周明不去,那是人家不用去。你们要是迟到了,那可是要扣平时分的。”刘小见刘天路刚起床,牙都还没刷呢,就和周明玩闹起来,便催促道。

被刘小这么一提醒,刘天路才记起来他还要上课。

“妈的,放几天假搞得我都快忘了,都怪周明。”刘天路一边去拿自己的牙刷,一边嘴里还在怪周明。

周明今天没有和沈清秋一同去教室,他回宿舍也只是为了拿自己的笔记本电脑。

在赵乐天他们离开宿舍之后没多久,周明也带上自己的笔记本电脑离开了宿舍,去了图书馆。

上次周明投稿《数学年鉴》的那篇“拉普拉斯特征函数的节点集合:纳迪拉什维利猜想和丘氏猜想中下限的证明”仅仅只是关于“拉普拉斯特征函数的节点集”的一部分。

这次,周明带着笔记本电脑来图书馆,就是要将“拉普拉斯特征函数的节点集”另一部分也弄出来发表。

没错,这次周明依旧是准备写论文,而且还是数学论文,这算是他的第三篇数学论文了。

Nodal sets of Laplace eigenfuns: polynomial upper estimates of the Hausdorff measure.

这是标题,中文含义是“拉普拉斯特征函数的节点集:豪斯多夫测度的多项式上限估计”。

“Abstract. Let M be a pact C^∞-smooth Riemannian manifold of dimension n, n ≥ 3, a φλ:?M φλ+λφλ= 0 dehe Laplace eigenfun on M corresponding to the eigenvalue λ. We show that……

周明一到图书馆,就打开电脑,写好标题后,就开始写摘要。

这次的论文,证明了Hausdorff测度对紧凑光滑流形定义的拉普拉斯特征函数的零点集的估计。

这篇论文和上一篇论文,能够推动拉普拉斯的谱以及节点集上的使用。

谱图理论是图论和组合数学的一个重要领域,它的主要研究有邻接矩阵、拉普拉斯矩阵和无符号拉普拉斯矩阵三大矩阵。

我们又称矩阵特征值的集合为图的谱,相应谱的研究就是:邻接谱,拉普拉斯谱,无符号拉普拉斯谱。

周明投稿《数学年鉴》的两篇数学论文都与拉普拉斯谱有关,他之所以选择这两篇论文投稿,其中一个主要原因就是拉普拉斯矩阵是谱图理论中的核心与基本概念,在机器学习与深度学习中有重要的应用。

而机器学习和深度学习,则是人工智能中至关重要的。

包括但不限于流形学习数据降维算法中的拉普拉斯特征映射、局部保持投影,无监督学习中的谱聚类算法,半监督学习中基于图的算法,以及图神经网络等。

还有在图像处理、计算机图形学等诸多问题。

理解拉普拉斯矩阵的定义与性质是掌握这些算法的基础,周明对这一方面的研究,也有利于他以后研究人工智能。

可以说,数学是绝大部分理工学科的基础,就是生物的某些专业,对数学的要求也是比较高的。

『加入书签,方便阅读』

上一页 目录 下一章